IA Groups – Example Sheet 4

Michaelmas 2023

hjrw2@cam.ac.uk

Questions marked * are more challenging. As usual, 'identify' means 'find a standard group that it is isomorphic to'.

- 1. Let K be a normal subgroup of order 2 in a group G. Show that K is a subgroup of the centre Z(G) of G.
- 2. Show that any proper subgroup of A_5 has index greater than 4.
- 3. Let $G \subseteq SL_3(\mathbb{R})$ be the subset of all matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \,.$$

Prove that G is a subgroup. Let H be the subset of those matrices with a = c = 0. Show that H is a normal subgroup of G, and identify the quotient group G/H.

4. Let $G \subseteq SL_3(\mathbb{R})$ be the subset of all matrices of the form

$$\begin{pmatrix} a & 0 & 0 \\ b & c & d \\ e & f & g \end{pmatrix} \ .$$

Prove that G is a subgroup. Construct a surjective homomorphism $\phi : G \to GL_2(\mathbb{R})$, and identify its kernel.

- 5. Show that matrices $A, B \in SL_2(\mathbb{C})$ are conjugate in $SL_2(\mathbb{C})$ if and only if they are conjugate in $GL_2(\mathbb{C})$. Show that conjugate matrices in $SL_2(\mathbb{C})$ have the same trace. Conversely, show that if $\operatorname{tr}(A) = \operatorname{tr}(B)$, then A and B are conjugate in $SL_2(\mathbb{C})$ unless $\operatorname{tr}(A) = \pm 2$. Give examples to show that the result does not extend to the cases when $\operatorname{tr}(A) = \pm 2$.
- 6. Let $SL_2(\mathbb{R})$ act on \mathbb{C}_{∞} by Möbius transformations. Find the orbits and identify the stabilisers of both i and ∞ . By considering the orbit of i under the action of the stabiliser of ∞ , show that every $g \in SL_2(\mathbb{R})$ can be written as g = hk with h upper triangular and $k \in SO(2)$. In how many ways can this be done?
- 7. Suppose that N is a normal subgroup of O(2). Show that if N contains a reflection then N = O(2).
- 8. Which pairs of elements of SO(3) commute?
- 9. If $A \in M_n(\mathbb{C})$ with entries A_{ij} , let $A^{\dagger} \in M_n(\mathbb{C})$ have entries $\overline{A_{ji}}$. A matrix is called *unitary* if $AA^{\dagger} = I_n$. Show that the set U(n) of unitary matrices is a subgroup of $GL_n(\mathbb{C})$. Show that

$$SU(n) = \{A \in U(n) \mid \det A = 1\}$$

is a normal subgroup of U(n) and that $U(n)/SU(n) \cong S^1$. Show that Q_8 is isomorphic to a subgroup of SU(2).

- 10. Show that if n is odd then $O(n) \cong SO(n) \times C_2$. Is SO(2) a factor of a direct-product decomposition of O(2)? * Is there any even n such that SO(n) is a factor of a direct-product decomposition of O(n)?
- 11. Let $X = \{B \in M_2(\mathbb{R}) \mid \operatorname{tr}(B) = 0\}$. Show that $SL_2(\mathbb{R})$ acts by conjugation on X. Find the orbit and stabiliser of

$$B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \,.$$

Show that the set Y of matrices in X with determinant 0 is the union of three orbits.

- 12. * Does $GL_2(\mathbb{R})$ have a subgroup isomorphic to Q_8 ?
- 13. * Let G be a finite non-trivial subgroup of SO(3). Let

$$X = \{ v \in \mathbb{R}^3 \mid |v| = 1 \text{ and } \operatorname{Stab}_G(v) \neq 1 \}.$$

Show that G acts on X and that there are either 2 or 3 orbits. Identify G if there are 2 orbits. Find examples of such subgroups G with three orbits.