IA Groups - Example Sheet 4

Questions marked * are more challenging. As usual, 'identify' means 'find a standard group that it is isomorphic to'.

1. Let K be a normal subgroup of order 2 in a group G. Show that K is a subgroup of the centre $Z(G)$ of G.
2. Show that any proper subgroup of A_{5} has index greater than 4 .
3. Let $G \subseteq S L_{3}(\mathbb{R})$ be the subset of all matrices of the form

$$
\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

Prove that G is a subgroup. Let H be the subset of those matrices with $a=c=0$. Show that H is a normal subgroup of G, and identify the quotient group G / H.
4. Let $G \subseteq S L_{3}(\mathbb{R})$ be the subset of all matrices of the form

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
b & c & d \\
e & f & g
\end{array}\right)
$$

Prove that G is a subgroup. Construct a surjective homomorphism $\phi: G \rightarrow G L_{2}(\mathbb{R})$, and identify its kernel.
5. Show that matrices $A, B \in S L_{2}(\mathbb{C})$ are conjugate in $S L_{2}(\mathbb{C})$ if and only if they are conjugate in $G L_{2}(\mathbb{C})$. Show that conjugate matrices in $S L_{2}(\mathbb{C})$ have the same trace. Conversely, show that if $\operatorname{tr}(A)=\operatorname{tr}(B)$, then A and B are conjugate in $S L_{2}(\mathbb{C})$ unless $\operatorname{tr}(A)= \pm 2$. Give examples to show that the result does not extend to the cases when $\operatorname{tr}(A)= \pm 2$.
6. Let $S L_{2}(\mathbb{R})$ act on \mathbb{C}_{∞} by Möbius transformations. Find the orbits and identify the stabilisers of both i and ∞. By considering the orbit of i under the action of the stabiliser of ∞, show that every $g \in S L_{2}(\mathbb{R})$ can be written as $g=h k$ with h upper triangular and $k \in S O(2)$. In how many ways can this be done?
7. Suppose that N is a normal subgroup of $O(2)$. Show that if N contains a reflection then $N=O(2)$.
8. Which pairs of elements of $S O(3)$ commute?
9. If $A \in M_{n}(\mathbb{C})$ with entries $A_{i j}$, let $A^{\dagger} \in M_{n}(\mathbb{C})$ have entries $\overline{A_{j i}}$. A matrix is called unitary if $A A^{\dagger}=I_{n}$. Show that the set $U(n)$ of unitary matrices is a subgroup of $G L_{n}(\mathbb{C})$. Show that

$$
S U(n)=\{A \in U(n) \mid \operatorname{det} A=1\}
$$

is a normal subgroup of $U(n)$ and that $U(n) / S U(n) \cong S^{1}$. Show that Q_{8} is isomorphic to a subgroup of $S U(2)$.
10. Show that if n is odd then $O(n) \cong S O(n) \times C_{2}$. Is $S O(2)$ a factor of a direct-product decomposition of $O(2)$? * Is there any even n such that $S O(n)$ is a factor of a direct-product decomposition of $O(n)$?
11. Let $X=\left\{B \in M_{2}(\mathbb{R}) \mid \operatorname{tr}(B)=0\right\}$. Show that $S L_{2}(\mathbb{R})$ acts by conjugation on X. Find the orbit and stabiliser of

$$
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Show that the set Y of matrices in X with determinant 0 is the union of three orbits.
12. * Does $G L_{2}(\mathbb{R})$ have a subgroup isomorphic to Q_{8} ?
13. * Let G be a finite non-trivial subgroup of $S O(3)$. Let

$$
X=\left\{v \in \mathbb{R}^{3}| | v \mid=1 \text { and } \operatorname{Stab}_{G}(v) \neq 1\right\}
$$

Show that G acts on X and that there are either 2 or 3 orbits. Identify G if there are 2 orbits. Find examples of such subgroups G with three orbits.

